
Developing white label mobile apps for a client
Our client is a technology startup that provides an employee training platform to corporate users. The platform is 

available in the form of two native white-label mobile applications.

Industry

Education

year founded

2018

location

USA

Challenge Since our client is a startup, they wanted to keep the size of the development team 

small and agile. To cut down costs, they could have developed one cross-platform 

application, but then certain compromises would have to be made in terms of the UX 

(non-native apps may provide a subpar user experience in certain environments). 

Since our client wanted to lay a solid foundation for great UX from the start, they 

went with building two native applications whose look-and-feel would appear natural 

to Android and iOS users. 

At the same time, our client’s products are meant for B2B customers who are very 

demanding about the app’s ability to match their brand identity. The majority of 

those corporate users have very specific branding requirements, including a highly-

customized UI layout and functionality. Our client understood that the cost of 

onboarding new users, each with their customization needs, could eventually become 

a problem. Because the client had limited development and QA resources, they 

realized they had to be smart about satisfying their B2B users’ needs, while also 

keeping a competitive production cost and time-to-market.

Solution The solution was to avoid compromising on the UX and to develop two mobile apps 

that are native to the iOS and Android system. We had to ensure that, with each new 

corporate app user, the code base didn’t grow out of proportion. We had to keep 

maintenance costs low. 



ObjectStyle developers solved this by adopting a smart architecting approach. The 

underlying app needed to provide white-labeling capabilities – we needed a 

mechanism for customizing it for each new user with minimum effort. There had to be 

an optimal amount of code that was to be shared by all user applications. And we 

needed to single out components that varied depending on a client: for example, the 

layout of elements on the screen, brand-specific fonts and colors, etc.

Native iOS app architecture

Components


Library

Layout Controller

Business


Logic

Client


Application

CLIENT #1

CLIENT #2

Modules

1. Core.

This module has no dependencies. It serves as the source of business logic and 

use cases for the Screen Kit.

2. Screen Kit.

Screens can follow brand-specific business logic, which is stored in the Core 

module. This module uses components from the Component Library to build 

screens and UI layout for apps, as well as connect components to the Core. This 

module is also responsible for navigation and screen routing.

3. Component Library.

This module contains theme-agnostic, general-purpose UI components (such as 

buttons, icons, forms, etc.) that are used to build interfaces. They are not 

related to the Core repo in any way.

Native Android app architecture

Android app’s architecture largely mimics that of its iOS counterpart. But it’s a 

different platform, so sometimes similar goals are achieved by different means.



Modules

1. Core.

It is the only part that “talks” to the backend. The purpose of this module is the 

same as that of the Core part in the  iOS app.

2. Common UI.

This module effectively combines the Screen Kit and Component Library of the 

iOS application on a conceptual level.

Results Both apps are flexible and well-positioned for the future. The team has a plan for 

various "what if" situations that may arise. If a user wants to add non-standard 

screens that are not a part of the current modular approach, we can do it with 

minimum modifications. If a client wants to integrate a third-party API for their brand 

only, it is possible, too. In addition, the business logic code is ready to be developed 

using Kotlin Multiplatform. This would provide room for even more code sharing, 

while keeping the native application approach.

Technology stack

iOS:

Swift and Swift 

Package Manager

UIKit

CoreData and GRDB 

(SQLite)

Alamofire

CI/CD: GitHub Actions

Go

TestFlight

Sentry

OneSignal

GetStream

Android:

Kotlin

UIKit

Dagger2 + Hilt

RxJava3

AndroidX

Firebase

Exoplayer

Antlr4

Sentry

GetStream

Lottie

Time Span and Resources

Duration: 3 years, and counting

Effort: 9000 man-hours

https://www.objectstyle.com/case-studies/developing-white-label-mobile-apps-for-a-client

https://www.objectstyle.com/case-studies/developing-white-label-mobile-apps-for-a-client

